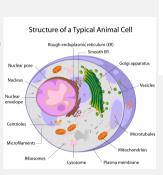
Gene Drive Organisms Unpredictabilities and novel risks

Dr. Ricarda A. Steinbrecher

European Network of Scientists for Social and Environmental Responsibility - ENSSER

European Parliament – Online Roundtable – 08 December 2020

r.steinbrecher@econexus.info


Complexity & Unpredictability

All levels important to consider:

- 1. Genome: Nucleotides and DNA (molecules)
- 2. Epigenome: gene regulation
- 3. Cells: function and communication
- 4. Organism: incl. action and interaction
- 5. Populations: behaviour, genetic diversity
- **6. Ecosystems:** interdependence; function (and services)
- 7. Landscapes
- 8. Biosphere: climate change, water cycles, nutrient cycles
- 9. Socio-economic circumstances (differ across the globe)

Across time and space

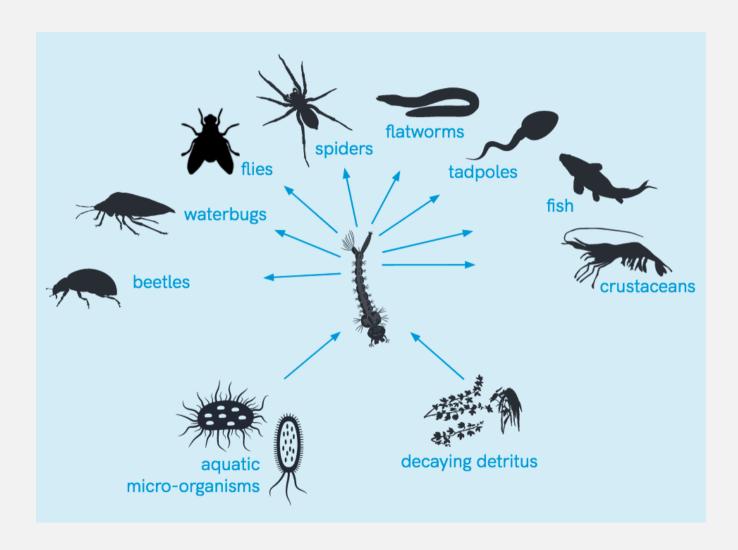
Engineered gene drives are very new

- 'Natural' or 'nature based' does not mean safe or predictable
- Concepts and components taken from nature, redesigned, recombined and moved into new context and new species:
 - Overriding rules of inheritance and selection
 - no co-evolved safeguards
 - high unpredictability at all levels (incl. mating behaviour)
- CRISPR-based GDOs create new GMOs each generation in the wild (no risk assessment of final product(s) possible)
- Resistance build-up stops gene drives from working *Risk*
- Concerning theoretical designs or proof of concept: assumptions are insufficient for predictions (incl. theoretical 'local' gene drives)

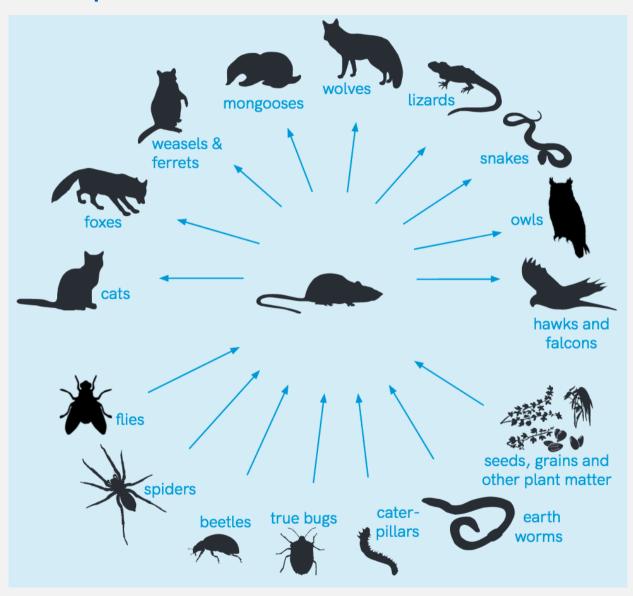
Risks & Inability of reliable risk assessment

Risk of uncontrolled global spread, esp. of global (i.e. standard) gene drives: intentional or unintentional

- Robust risk assessment is impossible (esp. taking into account all levels)


What if:

- a GD Organism becomes: more invasive, virulent, spreads other diseases, changes behaviour or interactions, impacts soil composition, alters behaviour of predators? Halt it? Reverse it?


Irreversibility: at phenotypic and genotypic level

- Secondary gene drives (gene drive catchers; 'immunisers') are largely theoretical and are incapable to restore the genome.

Trophic interactions of larval mosquitoes

Trophic interactions of house mice

Source: Gene Drives: A report on their science, applications, social aspects, ethics and regulation (2019). Chapter 2, page 106

Hazard identification, unpredictability & lack of knowledge

Spectrum of scenarios

What if:

- The gene drive works as intended
 - with unexpected outcomes (see above)
 - with expected outcomes but unexpected consequences
 (e.g. niche replacement)
- The gene drive works for a while but then stops:
 - Repopulation, **rebound effect**, unexpected changes in ecological interaction (e.g. after prolonged absence)
 - Presence of GMOs of various genotype with unpredicted behaviour, phenotype or genotype

-

Ecosystem-based approach

- valuable as guidance for selecting the right approach to solve problems
- Ecosystem approach used and defined under the UN Convention on Biological Diversity (CBD)

COP Decision V/6 https://www.cbd.int/decision/cop/?id=7148

COP Decision IX/7 https://www.cbd.int/decision/cop/?id=11650

What is 'nature based'? Nuclear power? Carbon and biodiversity offsets? Nano technology? GeoEngineering? – anything based on nature?

 Regarding "Nature-based Solutions" (NbS): the term, concept and approach is problematic and too broad; not defined under CBD (international treaty).

Gene drives for agricultural pests holds clear risks for biodiversity

Gene Drives. A report on their science, applications, social aspects, ethics and regulation. (2019) CSS/ ENSSER/VDW

https://genedrives.ch/report/

Gene Drive Organisms: Implications for the Environment and Nature Conservation. (2019)

https://www.umweltbundesamt.at/fileadmin/site/publikationen/repo705.pdf

Also:

Late Lessons from Early Warnings: The Precautionary Principle 1896–2000. (2001; 2002 online). European Environment Agency (EEA).

https://www.eea.europa.eu/publications/environmental_issue_report_2001_22

Late Lessons from Early Warnings: Science, Precaution, Innovation. EEA 2013. https://www.eea.europa.eu/publications/late-lessons-2